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MULTIVARIATE STATISTICAL ANALYSIS OF  

GENOTYPE × ENVIRONMENT INTERACTION IN  
MULTI-ENVIRONMENT TRIALS OF BREEDING PROGRAMS 

 
SUMMARY 

In final stages of plant breeding programs, a large number of new 
improved genotypes are tested over a wide range of test environments and the 
underlying statistics used to model this system may be rather complicated. 
Usually, the presence of the genotype × environment (GE) interaction effect 
complicates the selection of the most favorable genotypes for a target test 
environment. There are several statistical methods available to analyze results of 
multi-environment trials including a range of univariate and multivariate 
procedures. Univariate methods have inadequate capacity to fully explain the GE 
interaction structure because they attempt to define the GE interaction by one or 
two parameters but the multiplicative GE interaction is far too complex to be 
summarized by only some limited parameters. In contrast, multivariate statistical 
methods explore multi-directionality aspects of the GE interaction and try to 
extract more information. The most common multivariate statistical methods are 
cluster analysis (CA), principal components analysis (PCA), principal 
coordinates analysis (PCOA), factor analysis (FA), the additive main effect and 
multiplicative interaction (AMMI), shifted multiplicative model (SHMM), site 
regression biplot (GGE). This paper reviews these multivariate statistical 
methods for analyzing a multi-environment trial dataset. Several AMMI stability 
parameters were discussed and three of these important models (AMMI, GGE 
and SHMM) are compared.  
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INTRODUCTION 
Plant adaptation is the process by which genotypes become more suited to 

thrive in a given test environment and the term refers to the association between a 
plant and its environment It can therefore be used to explain process and 
condition. The common breeding target is to develop genotypes with high yield 
and stable performance over a range of production environments (Allard and 
Bradshaw, 1964). Stability is yield variability over environment and genotype 
adaptability is a term used to describe yield variability across locations averaged 
over years. Plant breeders are concerned with both stability and adaptability 
when making selections from breeding lines and they should be closely related if 
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the genotype × environment (GE) interaction is caused by unpredictable 
environmental variables (Annicchiarico, 1997). In choosing genotypes, a breeder 
would mostly be interested in their relative stability at a specific farm location. 
Where genetic differences in performance correspond to factors related with 
particular locations, they can be exploited by the development of regional 
breeding or selection programs if sufficient resources exist (Kang, 2002). The 
major objective of all crop-breeding programs is to develop pest and disease 
resistant genotypes as these genetically resistant genotypes have many benefits.  

The phenotype of a plant is the result of its genotype and the environment 
in which it develops but these effects may not be independently identifiable, 
hence consideration of the GE interaction in plant breeding. Some genotypes 
perform well in a wide range of test environments, but others require specific 
environmental conditions to show their genetic potential (Crossa, 1990). Most 
agronomists are concerned with the production of particular genotypes over time 
and place. Genetic improvement of crops involves modification of a genotype to 
produce a more appropriate expression for a particular environment but that may 
change over time, either in the short or longer term (Gauch, 2006). In practice, 
breeding for crop productivity and adaptation depends on the manipulation of 
both genetics and environment. Therefore, tasks for genetic adaptation are only 
one aspect of plant breeding, and may not be the most appropriate means to 
resolve the primary limit to productivity or adaptation (Yan et al., 2000). 

Several statistical procedures have been developed to describe the GE 
interaction and facilitate genotype recommendations in breeding programs 
(Ferreira et al., 2006). Common methods are broadly categorized in terms of 
parametric (univariate and multivariate) or nonparametric strategies. The 
univariate parametric strategy includes variance components-based methods 
(Wricke, 1962; Shukla, 1972) and joint linear regression methods (Eberhart and 
Russell, 1966; Hernandez et al., 1993), but the nonparametric strategy includes 
the rank values of genotypes (Huehn, 1979), and the multivariate strategy 
incorporates several statistical methods (Williams, 1952; Gauch, 1988). 
Multivariate methods have some advantages including deletion of noise from the 
data pattern, summarizing the dataset, and revelation of data structure (Crossa, 
1990). In contrast with conventional statistical strategies, the function of 
multivariate analysis is to elucidate the internal structure of data from which 
hypotheses can be produced and tested by statistical procedures (Gauch, 1996). 

Multivariate statistical methods are appropriate for analyzing two-way 
layouts of genotypes and environments in multi-environment trials. The response 
of a special genotype in various test environments may be conceived as a pattern 
in multi-dimensional space, with the coordinates of an individual axis being that 
of yield or another trait. Cluster analysis (Abou-El-Fittouh et al., 1969), principal 
components analysis (Freeman and Dowker, 1973), principal coordinates 
analysis (Mungomery et al., 1974), factor analysis (Peterson and Pfeiffer, 1989), 
the additive main effect and multiplicative interaction (Zobel et al., 1988), shifted 
multiplicative model (Cornelius et al., 1992), site regression biplot (Yan et al., 
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2000) are the most common multivariate statistical methods used for 
investigation of the GE interaction and yield stability analyses. Many studies 
have used multivariate stability statistics to analyze the GE interaction in 
agricultural trials. There is increasing global interest in using these statistics by 
plant breeders due to potential high returns relative to stability parameters. This 
review combines theoretical considerations and empirical studies to provide a 
comprehensive perspective. This discussion should enhance plant breeders’ 
understanding of multivariate analysis of the GE interaction. 

 
CLUSTER ANALYSIS 

Cluster analysis based on differences in genotypes’ responses across test 
environments is the most commonly used multivariate method.  There are two 
major types of the multivariate method that have been used to extract patterns of 
the GE interaction, classification and ordination techniques. Abou-El-Fittouh et 
al. (1969) proposed cluster analysis as a technique to classify test environments 
for cotton. Cluster analysis involves grouping similar entities in clusters and is 
effective for summarizing redundancy in data. A number of studies have been 
done to classify test environments or genotypes using cluster analysis in wheat 
(Fox and Rosielle, 1982), barley (van Oosterom et al., 1993) and soybean 
(Hanson, 1994). Identifying those genotypes with similar responses to 
environmental changes but different from genotypes in other groups can be 
intellectually satisfying, profitable, or sometimes both. The cluster analysis does 
not detect a particular statistical method but it often doesn’t need to make any 
assumptions about data distribution. ANOVA and joint linear regression models 
are used for analyzing two-way data but they do not identify the level which is 
responsible. To meet these targets, several cluster methods have been suggested, 
some of which classify individuals for similarity according to the one-way 
method (Edwards and Cavalli-Sforza, 1964; Callinski and Corsten, 1985); and 
others classify individuals for similarity of interactions based on the two-way 
method (Lin and Thompson, 1975; Lin and Butler, 1990).  

There are two major procedures for grouping genotypes according to their 
response to environmental changes; the first was proposed by Abou-El-Fittouh et 
al. (1969) in which genotype is a vector of n attributes indicated by m 
environments using the distance coefficient. Similar to this method, Mungomery 
et al. (1974) has used squared distance as a similarity index for clustering. In the 
second method, Lin and Thompson (1975) used the deviation MS from the linear 
regression model of the GE interaction (Finlay and Wilkinson, 1963) as a 
dissimilarity index for clustering. As an alternative procedure in the first method, 
Lin (1982) used the GE interaction mean square as a dissimilarity index for 
genotype classification through a slight adjustment of the distance coefficient of 
Abou-El-Fittouh et al. (1969) procedure. The dissimilarity index of Lin and 
Thompson (1975) benefits both genotype and GE interaction effects and Lin and 
Butler (1990) introduced a new dissimilarity index according to regression 
analysis that benefits only genotype as the main effect. Also, Lin and Butler 
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(1990) suggested a new dissimilarity index based on the mean square of only the 
GE interaction in contrast to the dissimilarity index of Lin and Thompson (1975) 
that uses both effects of genotype and GE interaction effects in ANOVA. 

An important aspect of cluster analysis is having a well-defined stopping 
criterion or cutoff point. It is very important to determine the right cut-off point 
to decrease the risk of Error type II. A cutoff point can be determined if the 
dissimilarity index has some relationship with the deviation mean square from a 
regression model or the GE interaction MS in ANOVA (Lin, 1982). For 
dissimilarity indices of Lin and Thompson (1975), Lin (1982) and Lin and Butler 
(1990,) some F-tests for stopping the clustering procedure are defined. Lin and 
Butler (1990) present a detailed illustration of clustering and computation of the 
dissimilarity index. Formulas for the dissimilarity indexes in each method and 
their degrees of freedom are given in Table 1.  
 
Table 1: The four possible methods for cluster analysis based on regression and 
ANOVA models 

 
†Grouping according to similarity of which sources 
‡ Degrees of freedom for fraction of F-test 
¶ Degrees of freedom for denominator of F-test 
 

For formulas 1 and 4; SSRi, SSDj indicate the sums of squares (SS) due to 
the regression and the SS of deviation from the regression for genotype i. Also, 
SSR(1,2, . . . ,r), SSD(1,2, . . . ,r) show the corresponding SS from the linear regression 
for genotypes 1, 2, . . . , r and r ≤ m. For formulas 2 and 3; SSGi, SSGEj indicate 
the sums of squares (SS) due to genotype and the SS of the GE interaction for 
genotype i. Also, m is the number of genotypes, n is the number of environments, 
r is the number of genotypes in a newly formed cluster and rep is the number of 
experiment replications. A FORTRAN-77 program, known as Sl16 (Lin et al. 
1992) is available for different methods of cluster analysis. 

There are various other ways of scaling and standardizing data including 
environment-centered, environment-standardized, environment heritability-
weighted and environment-ranked methods as well as these mentioned clustering 
procedures (Delacy et al., 1996). There are also numerous clustering methods 
that can be considered as inadequate as sometimes give different results when 
given the same dataset. The basic similarity of all clustering methods is that they 
use some similarity or distance measurements to classify items into groups. 
These measurements used for clustering either genotype or test environment are 
given in Table 2. 
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Table 2. Similarity and distance measures between two special genotypes 
Similarity measure¶  Origin 
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¶ summarized from Lin et al.  (1986) 
 

PRINCIPAL COMPONENTS ANALYSIS 
Principal components analysis (PCA) is a multivariate statistical method to 

identify data patterns as well as similarities and dissimilarities among variables 
based on ordination techniques of multivariate methods. According to Jolliffe 
(2002), the initial explanation of the PCA technique was given by Pearson (1901 
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cited in Jolliffe, 2002) and Hotelling (1933 cited in Jolliffe, 2002). Gower (1966) 
discussed links between PCA and various other statistical methods and provided 
a number of important geometric insights. The PCA method has been applied in a 
wide range of areas such as agriculture and genetics; it would be easy to add 
more to these fields. It is used to find optimal ways of combining variables into a 
small number of subsets, and the main applications of this method can be 
determined by analysis of multiple indicators, the measurement of complex 
constructs, scale construction and data reduction. In other words, the PCA 
procedure is appropriate when obtained measures on a number of variables are 
changed to a smaller number of artificial variables or principal components. The 
PCA method may then be used to establish predictors or criterion variables in 
subsequent analyses. 

Freeman and Dowker (1973) used PCA to interpret causes behind the GE 
interaction as a good tool, but Perkins (1972) found that PCA was not useful for 
studying adaptation. Hirosaki et al., (1975 cited in Crossa, 1990) reported that 
PCA was more efficient than the linear regression model in explicating 
performance of genotypes and Polignano et al., (1989) combined PCA with 
cluster analysis as an effective way of forming subgroups of faba bean. Under 
some conditions, the PCA is a generalization of the joint linear regression model 
(Williams, 1952). Mandel (1971) analyzed a two-way layout by applying the 
AMMI model; ANOVA for main effects and PCA for the interaction between 
main effects. Kempton (1984) used AMMI model for summarizing the pattern of 
genotype responses across environments. The display of genotypes and 
environments along the first two PCA axes for the interaction is known as a 
biplot (Gabriel, 1971). The PCA as an ordination technique that may have 
limitations such as reeducation dimensionality of data, distortions may 
sometimes occur, and if the magnitude of variance accounted for by the first two 
PCA axes is small, genotypes or environments that are far apart may be indicated 
by points that are close together (Gower, 1967). Furthermore, low correlation 
among variables prevents the occurrence of only a few dimensions from 
accounting for most of the variation and components may do not have any clear 
association with environmental factors. Finally, contrary to ANOVA, PCA 
assumes a complete multiplicative model without any explanation of the 
genotype and environment effect (Zobel et al. 1988).  

The joint linear regression model uses only two stability statistics, the 
regression coefficient and deviation MS, to explain the structure of response of a 
genotype across environments therefore most of the information is wasted. The 
PCA can overcome this difficulty by giving more statistics, the scores on the 
PCA axes, to describe the response pattern of a genotype (Eisemann et al., 1990). 
The PCA confounds the additive (main effects) pattern of data with the non- 
additive (GE interaction) and nonlinear relationship in the data prevents the PCA 
from efficiently describing the real relationships between variables. However, in 
recent decades it seems that the PCA, as a proper statistical procedure has not 
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been used individually but is mostly used in an AMMI model layout in 
combination with ANOVA. 

  
PRINCIPAL COORDINATES ANALYSIS 

Principal coordinates analysis (PCOA) is a generalization of PCA and 
measures similarities between genotypes. It is a method used to explore and to 
visualize similarities or dissimilarities of a dataset. This method assumes that the 
original variables had a Euclidean space and that their similarities are modeled by 
Euclidean distance (Gower, 1966; Westcott, 1987). The PCOA starts with a 
similarity or distance matrix and assigns for each individual, a position in a low-
dimensional space. The main target of the PCOA is to transform the data from 
one series of coordinate axes to another. Like PCA, this analysis maintains most 
of the initial configuration of the dataset in the first axes so some original 
information is lost. The PCOA can effectively reduce the pattern of a two-way 
dataset of multi-environment trials’ dimensions in a subspace of fewer 
dimensions (Ibanmez et al., 2001). The mentioned two-way structure can also be 
conceptualized as environment points in genotype dimensions. The limitations of 
the PCOA as an ordination approach of multivariate methods are similar to PCA. 
Furthermore, the nonlinear relationships prevent effective explanation of real 
relationships between genotypes (Gower, 1971).  

The PCOA (Westcott, 1987) was used for yield stability analysis by some 
authors (Crossa et al., 1989; Flores et al., 1996; Ibanmez et al., 2001). A measure 
of similarity between two genotypes, m and n, in a given test environment is: 

 
)/(]2/)([),( iiniinmi LHnmHS   

 
where Hi is the highest mean yield of a genotype in a test environment i ; Li is 
the lowest mean yield of a genotype in a test environment i ; mi is the mean yield 
of genotype m in a test environment i and ni is the mean yield of genotype n in 
test environment i. Similarity index between two genotypes (m and n) was 
defined as the average of Si(m,n) across test environments when more than one test 
environment was used (Westcott, 1987). Eigenvalues of the PCOA are usually 
from the greatest to the least and the first eigenvalue is often called the leading 
eigenvalue. The PCOA is according to the sequential accumulation of the test 
environments according to their rank order, the environments being ranked in 
ascending order according to their overall means (Crossa et al. 1989). Each 
analysis produced a two-dimensional plot according to the first two PCOA axes. 
Using the eigenvectors of the main PCOA axes via the initial distance matrix can 
be visualized. Also, minimum spanning tree plots were drawn and those most 
stable genotypes with high mean yield (performance) were most distant from the 
center of the plot across sequential cycles (Flores et al. 1996). Ordination 
methods like PCOA displaying a set of data points in two dimensions make 
associations visible among the items in a higher dimensional space. It is a 
excellent tool to visualize large datasets of plant breeders with high 
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dimensionalities; it not only maintains the main trends in data but most of the 
information on details gets lost and when the intrinsic dimensions of data set are 
relatively high, conclusions can be misleading. PCOA can perform all 
calculations and plots by GENSTAT 12.1 (VSN International, 2009). 

 
FACTOR ANALYSIS 

Factor analysis (FA), as a multivariate statistical method, is used to explain 
variability in terms of a lower number of artificial variables or factors. It explores 
for linked variations in relation to artificial factors and the variables are modeled 
as linear combinations of potential factors as well as Error term. The FA is an 
ordination method related to PCA, the factors of the former being similar to the 
PCA of the later. It is first used as a psychometric model and is equivalent to low 
rank estimation of the matrix of original variables. A large number of related 
variables are reduced to a small number of factors (Cattell, 1965), and variation 
is described in terms of these factors. These general factors are common to all 
studied variables and in terms of factors, are unique to each variable. The axes of 
the initial factors may be rotated to oblique locations to conform to hypothetical 
ideas. The FA is related to the PCA, but the two are not completely identical; as 
FA uses a regression model to test hypotheses, the PCA is a descriptive method 
(Bartholomew et al., 2008). 

The FA has been used to grasp interrelationships between different yield 
components of crops as well morphological properties of plants (Tadesse and 
Bekele, 2001; Tabrizi et al., 2011). Factors are conceptualized as real entities 
such as yield, but the components of PCA are abstractions that may not map 
easily onto real phenomena. PCA analyses total variance but FA shares variances 
that are analyzed. Godshalk and Timothy (1988) used a similar procedure to 
investigate several traits of switchgrass (Panicum virgatum L.) genotypes, and 
Saftner et al., (2008) compared the instrumental and sensory quality properties of 
blueberry fruit (Vaccinium corymbosum L.) genotypes. Peterson and Pfeiffer 
(1989) used FA to investigate investigation the underlying patterns and 
associations of multi-environment trials of wheat. They grouped the 56 locations 
into seven distinct regions or mega-environments. Fritsche-Neto et al., (2010) 
applied FA to GE interaction stratification in maize and reported that 
stratification of the test environment by FA was more selective in joining 
similarities according to a genotype’s yield performance. Dettori et al., (2011) 
studied several quality traits of durum wheat in multi-environment trials and 
found that various quality traits could be regarded in low numbers of factors and 
one of the breeding lines indicated good quality traits as well as high mean yield 
in Italy. 

THE ADDITIVE MAIN EFFECT AND  
MULTIPLICATIVE INTERACTION 

The essential statistical background for the additive main effect and 
multiplicative interaction (AMMI) models was developed in 1952 by Williams 
(1952) after the invention PCA and ANOVA procedures.  The AMMI model 
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consists of fitting an additive model (ANOVA) for producing general means, 
genotypes’ means, and environments’ means, and then fitting a multiplicative 
model (PCA) for the residual of an additive model or a GE interaction. It should 
be noted that PCA can be applied to original data or to GE interaction values; 
PCA is the first option and AMMI is the second. However, the usual 
investigation target is rather to use only one to a few PCA axes to summarize 
patterns in the GE interaction. The AMMI model came into widespread use in 
different scientific fields (Gollob 1968; Mandel 1971). The AMMI model is 
usually referred to as biplot analysis, even though this term was actually intended 
to refer to a graph or plot containing two kinds of points (Gabriel 1971). The 
AMMI model is an appropriate choice when both main effects and GE 
interaction are important. 

According to Gauch (1992) and Gauch et al., (2008), the AMMI model is 
an effective tool for several targets: (i) understanding GE interaction, (ii) 
identifying mega-environment patterns, (iii) improving the accuracy of yield 
estimates, (iv) imputing missing data, and (v) increasing the flexibility of 
experimental designs. The AMMI model increases the probability of successfully 
selecting genotypes with the highest yields (Gauch and Zobel 1996). When a 
special different statistical method is appropriate, it is often most easily 
diagnosed by means of a preliminary analysis by an AMMI model (Bradu and 
Gabriel 1978). Sometimes the clearest understanding of a dataset emerges from 
several statistical analyses, each revealing various features of the data. If the 
design result in adjusted data is judged superior to the raw data, then those 
adjusted data should be supplied to the AMMI model (Gauch, 2006). Finally, 
these advantages imply larger selection gains in plant breeding and more reliable 
recommendations.   

The AMMI model presents a new research tool with the possibility of 
producing adjusted means that often have predictive accuracy equivalent to 
original means.  It can improve accuracy as much as a double or triple the data 
collection effort might (Gauch and Zobel, 1997).  Most strategies for improving 
accuracy need a particular experimental design but the AMMI model has no such 
requirements, so it is applicable to historical data of experimental design.  Thus, 
the power of the AMMI model to extract additional information will often make 
hard-won historical data worthy of renewed interest (Gauch et al., 2008). The 
three most common strategies of plant breeders for analyzing yield data are 
ANOVA (additive model), PCA (multiplicative model), and linear regression 
(Finlay and Wilkinson 1963).  These approaches are largely subsumed and 
integrated by the AMMI model and this advantage is increased with dataset size 
and noise level. 

Analysis of the GE interactions was made from the AMMI model. The 
model AMMI equation is: 
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n
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Where ijY  is the yield of the ith genotype in the jth environment;   is the 

grand mean; ig  and je  are the genotype and environment deviations from the 

grand mean, respectively; n  is the eigenvalue of the IPC analysis axis n; in  

and jn  are the genotype and environment eigenvectors for axis n; n is the 

number of principal components retained in the model and ij  is the error term. 

Zobel (1994) suggested the two EV stability parameter of AMMI 
according to the blow relation: 
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The AMGE and SIPC  parameters according to Sneller et al., (1997) are 
expressed as: 
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where M is the number of environments. Another stability parameter of 
AMMI according to the blow equation was proposed by Annicchiarico (1997). 
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The AMMI's stability value (ASV) is suggested by Purchase (1997): 
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where, SS, sum of squares, IPC1, interaction of principal component 
analysis one, IPC2, interaction of principal component analysis two. For effective 
interpretation of GE interactions via AMMI model a new parameter as modified 
AMMI’s stability value (MASV) is proposed: 
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The ASTAB stability parameter (Rao and Prabhakaran, 2005) is calculated 
using this formula: 





n

n
ninASTAB

1

2   (8) 

Also, four Ii stability indexes (Rao and Prabhakaran, 2005) for 
simultaneous selection of both mean yield and stability were computed based on 
ASTAB stability parameter and mean yield as: 
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where .iY  is the mean yield of the ith genotype;   is the general mean; α 

is the ratio of weights given to the stability components (α= 1 for I1, α= 0.66 for 
I2, α= 0.43 for I3, and α= 0.25 for I4,). Most of the mentioned the AMMI stability 
parameters were used successfully in analyzing multi-environment trials data by 
Sabaghnia et al., (2008a) in lentil (Lens culinaris Medik), Dehghani et al., (2010) 
in chickpea (Cicer arietinum L.) and Sabaghnia et al., (2012b) in durum wheat 
(Triticum turgidum L.). These authors reported that the AMMI model as an 
appropriate statistical tool for investigating multi-environment trials. 

The results of the AMMI model can be used to construct a biplot with a 
point for each genotype and for each environment, located in a graph indicating 
the main effects on the abscissa and the GE interaction scores on the ordinate 
(Gauch 1992; Gauch and Zobel, 1996).  Such a graph as AMMI-1 biplot 
indicates, at a glance, both the main effects and the GE interaction effects for 
both genotypes and environments.  Another useful biplot as AMMI-2 biplot 
indicates interaction PCA1 scores on the abscissa and interaction PCA2 scores on 
the ordinate (Gauch, 1992).  Biplots can readily provide deep insights into a 
large, complex experiment (Kempton 1984; Zobel et al., 1988). 
Mega-environment analysis is included for the AMMI1 model through biplots 
(Gauch and Zobel 1997). One of the main objectives in the evaluation of multi-
environment trials is to identify superior genotypes for a target area and to 
determine if this area can be subdivided into different mega-environments to 
better guide breeding strategies (Kang, 2002). The AMMI-2 biplot is an efficient 
means for detecting the possible mega-environments in multi-environment trials. 
The identification of mega-environments is involved with investigation of the 
annually repeatable GE interaction (Gauch and Zobel, 1996). For a particular 
mega-environment, genotypes are studied on the basis of mean yield and stability 
performance across test environments. 

 
SHIFTED MULTIPLICATIVE MODEL 

The shifted multiplicative model (SHMM) proposed by Seyedsadr and 
Cornelius (1992) groups genotypes into classes within which crossover 
interactions do not exist and within such groups, the genotype with the best mean 
would be the best. Multiplicative models for multi-environment trials have been 
used for studying GE interactions and for developing methods for grouping test 
environments and genotypes into groups with negligible crossover interaction 
(Cornelius et al., 1993; Crossa et al., 1993; Crossa and Cornelius, 1997; Abdalla 
et al., 1997). These models have an additive component (such as interception of 
linear regression, main effects of s environments and genotypes) and a 
multiplicative component (GE interaction effect). The SHMM model is a re-
parameterization of the Tukey’s (1949) model for testing non-additivity. The 
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singular vectors on effects for genotypes and test environments for the ordered 
components are primary, secondary, and so forth (Cornelius and Seyedsadr, 
1997). 

Cornelius et al., (1992) defined sufficient conditions for the absence of 
significant genotype crossover interaction in a set of environments and genotypes 
in the first SHMM model (SHMM1= model with one multiplicative term). In 
SHMM models, differences among genotypes in a special test environment are 
proportional to genotype differences in any other environment, but differences 
among environments with respect to the performance of a special genotype are 
proportional to environmental differences with respect to performance of any 
other genotype (Crossa et al., 1993). When an SHMM model is fitted to the 
dataset of multi-environment trials, secondary and perhaps even higher-order 
effects must be included if a sufficient fit is to be achieved. In clustering via a 
SHMM model, the measurement of distance between two test environments is 
taken as the residual mean square after fitting SHMM1 to the data from the two 
test environments subject to an additive constraint (Cornelius et al., 1993). 

Cornelius et al., (1993) grouped 41 winter wheat (Triticum aestivum L.) 
genotypes into non-crossover interaction clusters via SHMM clustering method. 
Abdalla et al., (1997) clustered several durum wheat cultivars and related test 
locations via the SHMM model. Trethowan et al., (2001) used the SHMM 
clustering of test environments to investigate long-term associations between test 
locations for multi-environment trials on bread-wheat. They demonstrated the 
usefulness of SHMM for identifying key testing environments around the world. 
The SHMM clustering of genotypes is essentially by the same strategy as for 
clustering environments. The distance between two genotypes is defined using a 
constrained solution, when an SHMM1 model is fitted to the subset of data.  

 
SITE REGRESSION BIPLOT 

A usual phenomenon in most multi-environment trials is that environment 
is the predominant source of yield variation, and genotype and GE interaction are 
relatively small (Gauch and Zobel, 1996). The large magnitude of the 
environment effect is not relevant to genotype evaluation and only the genotype 
main effect and GE genotype are relevant to genotype evaluation. Therefore, it is 
essential to remove the environment effect from data and to focus on the other 
variation sources (G+GE). The GE received much attention because the G 
interaction is so much more straightforward to visualize and use. The GE 
interaction is validated by the numerous measures of stability index (Kang, 
2002). Selection based on genotype effect alone may be justified if the GE 
interaction is known to be random and cannot be exploited (Yan et al., 2000). 
Exploration of the GE interaction began to make much sense following the 
advent of the concept of crossover interaction (Baker, 1990) or rank change 
(Huehn, 1996). Therefore, it seems that investigation into GE is much more 
meaningful when it is treated in conjunction with genotype effect. Sabaghnia et 
al., (2008b) in lentil (Lens culinaris Medik), Dehghani et al., (2009) in corn (Zea 
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mays L.) hybrids and Sabaghnia et al., (2012a) in durum wheat (Triticum 
turgidum L.), applied the GGE biplot model in evaluation of GE interaction, 
identification of mega-environments’ structure and visualization of the “which-
won-where” pattern in multi-environment trials. They detected mega-
environment patterns for the mentioned crops and reported this method as an 
excellent tool for visual multi-environment trials’ data analysis. 

The biplot method (Gabriel, 1971) was expanded by Kempton (1984) and 
Zobel et al., (1988) highlighting the extensive usefulness of G+GE biplot (Yan et 
al., 2000). This method has strongly captured the imagination of plant breeders 
and agronomists. To explain GE interactions, a GGE biplot helps analyze multi-
environment trials’ data (Yan and Kang, 2002). These aspects make GGE biplot 
the most comprehensive tool in plant breeding. The GGE model deals with 
analysis of multi-environment trials’ data and identifies (i) mega-environment for 
understanding the target environment, (ii) genotype evaluation for each mega-
environment, (iii) understanding causes of GE interaction. The crossover 
interaction concept has led to investigations to identify homogeneous groups of 
environments with negligible crossover (Crossa and Cornelius, 1997). A further 
development of this concept is the emphasis on the “which-won-where” pattern 
(Gauch and Zobel, 1997). The GGE model is the most effective, useful and 
elegant way to reveal the “which-won-where” pattern of multi- environment 
trials’ dataset. If there are important crossovers, the repeatability of the ‘which-
won-where’ pattern is more important. This is a critical issue to division of the 
target environment into different mega-environments (Cooper et al., 1993) and 
presence of complex mega-environments. 

The GGE model describes what is called genotype main effect in terms of 
GE interaction by definition of a constant value for a genotype across test 
environments. The genotypic PCA1 score of GGE model indicates a tendency of 
th genotypes to respond to environmental factors represented by the 
environmental PCA1 scores. The yield of genotype relative to PCA1 of GGE 
model is not the same in all environments; rather, it is proportional to the location 
of PCA1 scores. Thus, the GGE model emphasizes the fact that the genotype 
main effect not only has a genotypic basis but is also dependent on 
environmental conditions. Therefore, testing PCA1 scores not only detects 
genotypes with better overall performance but also suggests environmental 
conditions that facilitate identification of these genotypes. Yan and Rajcan 
(2002) reported that interactions between genotypic effects and environmental 
factors were the major causes of GE interaction for winter wheat yield due to 
PCA1 and PCA2 scores of GGE model. Also, understanding of the GE 
interaction is achievable if genotypic and environmental covariates are used in 
multi-environment trials (Yan and Kang, 2002). 

 
STATISTICAL PACKAGES 

All the reported multivariate statistical methods are difficult to apply by 
plant breeders without suitable and user-friendly software. MATMODEL is 
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software for AMMI and joint linear regression, which is available freely (Gauch, 
2007). CROPSTAT of the International Rice Research Institute (IRRI, 2008) is 
freely available for performing ANOVA, joint linear regression, AMMI and 
pattern analysis. To compute SHMM model and for generating clusters of 
environments or genotypes, the Fortran-based program as EIGAOV is available 
from P.L. Cornelius, University of Kentucky, USA. Also, AGROBASE 
(Agronomix Software, 2009) commercial software performs ANOVA, joint 
linear regression and AMMI model; GGEbiplot (Yan, 2001) commercial 
software performs ANOVA, joint linear regression, AMMI model and GGE 
model; and GENSTAT 12.1 (VSN International, 2009) commercial software 
performs ANOVA, joint linear regression and AMMI model. 

 
COMPARISON OF DIFFERENT  
STATISTICAL PROCEDURES 

In recent decades the use of simple or first order multivariate procedures 
(PCA, PCOA and FA) in analysis of multi-environmental trials has been limited 
but the use of complex or second order multivariate procedures (AMMI, SHMM 
and GGE) in analyzing multi-environmental trials is significantly increased. It 
seems that most plant breeders like to determine the nature and pattern of GE 
interaction using more efficient statistical methods as well as possible. Second 
order multivariate methods have a good ability to partition a signal-rich model 
from a noise-rich discarded residual (Cornelius and Crossa, 1999) while cluster 
analyses lack that ability and are therefore quite vulnerable to noise (Smith and 
Gauch, 1992). After simple multivariate procedures; the AMMI model began to 
attract the attention of plant breeders after Zobel et al., (1988), which has become 
a popular tool among researchers for understanding the GE interaction. Then, the 
SHMM and the GGE biplot are suggested to explore the structure of the GE 
interaction. Common features of AMMI, SHMM, and GGE models are that they 
all use PCA, but they differ in processes of data transformation prior to PCA 
application and differ in methods of interpretation in terms of parameters and 
graphs. The AMMI model treats three sources of total variation (G, E and GE 
interaction) separately, whereas SHMM subtracts a single value (the shift 
parameter) from every matrix cell. The GGE model subtracts the environment 
main effect and then performs PCA on the remaining variation (G+GE 
interaction). Comparison of the AMMI1, SHMM2 and GGE2 models for the 
purpose of GE interaction exploration indicated that the AMMI model is the only 
contender among these three options, because it analyzes the GE interaction itself 
apart from other variation sources.   

The mega-environment identification of the GGE2 biplot is comparable to 
an AMMI1 biplot while no GGE biplot has yet been developed that corresponds 
to the AMMI2.  Therefore, the AMMI model is superior to the GGE model for 
mega-environment identification through a biplot in the complex interaction. The 
AMMI model is unique in analyzing effects separately, without confounding the 
genotype effect with GE effects, which as been a basic requirement in plant 
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breeding.  In contrast the SHMM model is completely unaware of this simple and 
important distinction. Finally, it seems that the AMMI model is better than other 
methods (SHMM and GGE) for analyzing multi-environment trials datasets. 
Agronomists attempt to improve environmental conditions, whereas plant 
breeders try to improve genotypes. Therefore, it seems that it is better to consider 
these effects (G+E+GE interaction) separately, and so the AMMI model is 
preferred. 

 

CONCLUSIONS 
Among different clustering methods, there are four methods that benefit 

most from the special F-test for determination of a cutoff point, a good procedure 
for classification of genotypes in multi-environment trials. The main reason 
highlighting the AMMI model as the most appropriate one for breeding programs 
is that the ANOVA section of the AMMI model can separate effects of genotype 
and environment from the GE interaction, and the PCA section of the AMMI 
model can separate the signal-rich portion of the GE interaction. The AMMI 
model offers better opportunities than GGE and SHMM models for graphic 
analysis of the GE interaction and mega-environment identifications but options 
of GGE biplot software are more acceptable for most researchers. Therefore, it 
seems that developing similar statistical packages for an AMMI model could 
encourage plant breeders as well as other researchers to use this powerful 
statistical procedure in their investigations. 
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VIŠEFAKTORIJALNA STATISTIČKA ANALIZA INTERAKCIJE 

GENOTIP × ŽIVOTNA SREDINA KOD OGLEDA SA VIŠE FAKTORA 
ŽIVOTNE SREDINE U PROGRAMIMA OPLEMENJIVANJA 

 
SAŽETAK 

U završnim fazama u programima oplemenjivanja biljaka, veliki broj 
novih poboljšanih genotipova je testiran u širokom opsegu faktora spoljašnje 
sredine i osnovne statističke metode koje se koriste za modeliranje ovog sistema, 
i pri tom mogu biti prilično komplikovane. Obično prisustvo dejstva interakcije 
genotipa i sredine (GE) komplikuje izbor najpovoljnijih genotipova za određene 
uslove spoljašnje sredine. Postoji nekoliko dostupnih statističkih metoda za 
analizu rezultata ogleda u koje je uključeno više faktora spoljašnje sredine  
uključujući niz jednofaktorijalnih i višefaktorijalnih procedura. Jednofaktorijalne 
metode imaju neadekvatan kapacitet da u potpunosti objasne strukturu GE 
interakcije, jer oni pokušavaju da definišu GE interakciju na osnovu jednog ili 
dva parametra, dok je multiplikativna GE interakcija mnogo kompleksnija, te se 
ne može ograničiti na samo nekoliko parametara.  Nasuprot tome, višefaktorijane 
statističke metode istražuju više aspekata GE interakcije i pokušavaju da uzmu u 
obzir više informacija. Najčešće korišćene višefaktorijalne statističke metode su: 
analiza grupe (CA), analiza glavnih djelova (PCA), analiza glavnih koordinata  
(PCOA), faktorska analiza (FA), dodatni glavni efekat i multiplikativna 
interakcija (AMMI), izmjenjen multiplikativni model (SHMM), sajt biplot 
regresija (GGE). Ovaj rad daje pregled ovih višefaktorijalnih statističkih metoda 
za analizu podataka u ogledu sa više faktora spoljašnje sredine. Nekoliko AMMI 
parametara stabilnosti je razmatrano i poređena su tri ova značajna modela 
(AMMI, GGE i SHMM).  

Ključne riječi: adaptacija, biplot, analiza stabilnosti, prinos 


